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Abstract 

Weak statistical associations in the health sciences can be a potential clue to 

causation under certain conditions. The present paper aims at pointing out some 

methodologies capable to investigate the possible causal import of weak statistical 

associations. Debiasing and prior elicitation techniques are presented in order to 

possibly overcome some problems placed on the edge between statistics and 

causality. We draw attention to the choice of the statistical techniques in handling 

weak associations, as every model brings with it certain (tacit) philosophical 

assumptions of methodological nature.  

 ملخّص

 لغز لحل مفتاحاً ممكناً  تقدم أن الصحة علوم فى  الضعيفة الإحصائية للترابطات يمكن
 القادرة المنهجيات الإشارة لبعض إلى الحالية المقالة تهدف.  معينة شروط تحت السببية

 فض تقنيات تُقدم وسوف.  للترابطات الإحصائية الممكنة السببية الفحوى فحص على
 الواقعة المنطقة فى الموجودة المشكلات ز بعضتجاو أجل من المتقدم والتوضيح التحامل

 معالجة فى الإحصائية التقنيات اختيار عملية إلى لفت الانتباه مع ، والعِلية الإحصاء بين
( المضمرة) الافتراضات الفلسفية بعض معه يستحضر نموذج كل لأن الضعيفة ، الترابطات

 . منهجى طابع لها التى

 

Résumé 

Les faibles associations statistiques dans les sciences médicales peuvent fournir une 
clé potentielle pour résoudre, sous certaines conditions, le probléme de la causalité. 
L’article présent tend à examiner quelques unes des méthodologies susceptibles 
d’investir  le possible import causal des faibles associations statistiques.  Des 
tehniques de dépolarisation et de première élucidation sont présentées dans le but de 
traiter dans les termes du possible quelques problèmes placés entre les statistiques et 
la causalité. Vu que chaque modèle apporte avec lui quelques assomptions 
philosophiques (tacites) de nature méthodologique, nous attirerons l’attention au 
choix des techniques statistiques dans le traitement des faibles associations. 

 

 

Introduction 

Probabilistic theory of causation covers a non-secondary but recent role in the health 

sciences because of the increasing contribute of statistics in medicine. Within the 

framework of probabilistic causation, in particular in etiological epidemiology and clinical 

epidemiology for the effect of novel treatments, like in oncology (Pless and Weinberg 

2011), there is the issue of “weak associations”, namely those associations between 
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factors which are at most twice greater in the exposes if compared to the control group 

and which might be a possible clue to causality. It is quite common to name those 

associations between risk factors and outcomes characterized by a relative risk (namely, 

which provides the ratio of the probability –  incidence in epidemiologic terms  –  of the 

disease in the exposed population to that in the unexposed population) , less than 2 (e.g., 

the association between smoking and myocardial infarction) as “weak associations” 

(Boffetta 2010). Indeed, if the ratio between the incidence in the exposure group and in 

the control group is greater than 2, this means that an individual in the exposure group is 

more likely than not to develop the disease. If the relative risk is 1.5, the component 1 is the 

background risk while only the component 0.5 is due to a particular exposure, while if 

relative risk is 2.5, the background risk is 1 and the risk-component due to exposure is 

1.5. In such a case, an individual in the exposure group is more likely than not to develop 

the disease, since the risk-component associated to the exposure is greater than the 

background risk-component. 

The acknowledgment of a ‘true’ weak association is a key epidemiological notion and “an 

inferential challenge” (Weed 1997). On the one hand, weak associations can be easily 

affected by confounding and bias, but, on the other hand, the possibility that a weak 

association can be a causal relationship cannot be ruled out a priori. More generally, from 

a public health perspective, the fact that relative risk is < 2 does not entail that such risk 

can be neglected if the exposure prevalence of the risk factor leads to a high Levinson’s 

population attributable risk, which is the portion of outcomes which could be avoided if 

the risk factor exposure would be removed. 

This paper aims at outlining the reasons for adopting an eclectic view on probabilistic 

causality in order to integrate epidemiologic evidence with the individual level of clinical 

knowledge in the context of medical research and practice.  

The next section is devoted to the issue of weak associations, while Section 2 deals with 

the assessment of causal inference in clinical epidemiology and its relevance for applied 

philosophy. Section 3 is devoted to analyse certain limits of the probabilistic approach to 

causality and to outline the methodology of prior elicitation which is intended to soundly 

convert experts’ information into probabilistic information. Some concluding remarks in 

Section 4 underline the necessity of integrating epidemiologic with clinical evidence. 

1. Weak associations 
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In epidemiologic research, Rothman and Poole have suggested the possibility of a 

‘strengthening programme’ for weak associations obtained by reducing misclassification 

and bias and by focusing on population at low risk in order to avoid the interaction 

between study factors and other possible causes (Rothman and Poole 1988). For 

instance, imagine that we want to study the relation between a weak risk factor, say (D) 

drinking alcohol, and lung cancer (LC). As it is a well establish fact that there is a very 

strong association between LC and smoking cigarettes (SCs), consequently if we want to 

study the relationship between W and LC, we must exclude smokers from the target 

population, otherwise the majority of cases would be due to SCs. In this way the weak 

probabilistic association might eventually indicate a possible causal relationship (Szklo 

and Nieto 2004; Cornfield, Haenszel et al. 2009), even if other risk factors cannot be 

excluded. Similar ideas have been also presented in philosophy of science, see (Salmon 

2006).  

Let us consider now, as a way of example, the associations that are detached in 

nutritional epidemiology, where weak statistical associations are very common. In this 

field it is quite common to find studies which report a relative risk estimate of 0.8-1.2, 

namely a weak association. Higher estimates of relative risk may be due to bias and 

errors. Nonetheless, the evidence of weak association in nutritional studies, on the one 

hand, may entail some important concerns from the public health perspective since the 

population attributable risk is high because of the high prevalence of exposure in the 

population. On the other hand, an association which is acknowledged weak at population 

level can conclude to be an important element of causality at individual level. Moreover, 

it has been recently observed that weak associations in nutritional epidemiology can be 

enhanced and better understood epidemiologic studies are conducted on different 

populations trying to replicate the results (Van Staveren, Burema et al. 1988) as well 

integrating different forms of evidence. When data are presented in a study it may be 

difficult to assess the real association between the factors of interests and that is why it is 

necessary to present scientific findings in a way that may avoid the rise of paradoxes. 

Thus, the framing of data and epidemiologic information is an essential part of the work 

of the researcher together with the explication of the causal structure that he (or she) is 

trying to prove. Nevertheless, dealing with statistical weak associations among 

populations from an epidemiologic perspective does not suffice to detect a causal 

pathway in an individual case. The knowledge of the epidemiological frequencies in a 

population might be silent with respect to a single causal event since it is necessary to 
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know other individual conditions – based on patient’s conditions – that may shape the 

causal process. Such individual conditions can be probabilistically estimated by means of 

an epistemic account of probability based on the rational beliefs in a causal hypothesis 

about a single event in which the conditions determined by other possible known causal factors that 

may have contributed to the occurrence of the effect are at least partially eliminated. This eclectic view 

on the combinations of probabilities is, for instance, supported in (Hacking 2001). The 

validity and limits of such a view will be evaluated in Section 3. The next section offers a 

methodological outlook of causal inference in epidemiology. 

2. Causal inference in clinical epidemiology 

The discovery of a new causal relationship between a risk factor and a certain outcome is 

always a big step for clinical knowledge, even if only in a few cases there is a strong 

causal relation between a condition – more likely a single genetic condition in case of 

Mendelian (monogenetic) diseases – and a resulting outcome. In any case, such 

association is not deterministic, since one has to take into account the level of penetrance, 

that is the probability of a phenotype given the genotype, and expressivity, which is the 

variation in a phenotype among persons given a particular genotype.  Moreover, the 

influence of environmental and epigenetic conditions cannot be ruled out for many 

diseases. Hence, even in genetic based diseases there is a set of different (and in certain 

cases unknown) risk factors which contribute to a statistical association with a specific 

outcome.  

It has been remarked that two main standpoints appears to be involved in the 

determination of a causal relationship in the biomedical sciences: the probabilistic and the 

(biological, chemical, genetic, social, etc.) mechanistic dimensions of causality, whose 

features are often difficult to be matched, but it does not seem plausible to conceive 

them separately (Broadbent 2011; Campaner 2011). In any case, other standpoints on 

causality are non-marginal in the health sciences: e.g., in randomized controlled trials 

causal claims are based on counterfactual conditions between the treatment group and the 

control group. A very same individual cannot be tested in both groups, therefore it is 

assumed because of randomization that if an individual of the control group would have 

undergone the treatment, then he would have been exposed to the same risks and 

benefits of the other individuals in the treatment group and this is a counterfactual 

assumption. Furthermore, it has been observed that once an association is detached by 

means of a randomized controlled trial, there is no warrant that such association could be 
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externally valid outside the study population (Cartwright 2007; Thompson 2010), even if 

this is a common feature of all types of epidemiologic studies.  

It is worth noting that the debate on causality in clinical epidemiology mainly affects the 

determination of the nature of the epidemiological research itself. The dispute on the 

nature of clinical epidemiology, in fact, ranges from positions where clinical 

epidemiology is conceived as a “black-box” intended to discover the strength of 

association between efficacy of treatments od the presence of adverse risk factors and 

outcome (Savitz 1994; Greenland, Gago-Dominguez et al. 2004) up to others assuming 

that clinical epidemiology must “open the box” in order to understand the causal 

relationships by means of the findings and theories of other biological, social, chemical 

and genetic sciences (Skrabanek 1994; Weed 1998). For sure, the black-box strategy 

involves a higher level of abstraction which can fail in understanding the web of 

causation since such strategy can merely detect associations; nevertheless, such high level 

of abstraction in the black-box strategy may suggest new risk factors for which there is 

not yet, for instance, a biological explanation. In any case, the probabilistic account of 

causation is required by both tendencies in clinical epidemiology and that is why it has 

such a central role. In any case, there is also no universal consent, from an 

epidemiological point of view, on what makes a distinction between a causal relationship 

and a mere statistical interaction. To this purpose Bradford Hill proposed that causality 

shows some aspects which may considered as indicators of a possible causal relationship. 

In the past, in fact, there was the tradition of interpreting Bradford Hill’s considerations 

on some aspects of statistical association as causal criteria (Hill 1965; Ward 2009). These 

aspects of causation concern the strength of association, the consistency of association that is 

the repeated observation of the association on different populations in different contexts, 

the specificity of association for which a cause can only lead to a single effect, the temporal 

relationship for which a cause has to precede the occurrence of the effect, biological 

plausibility, coherence for which “our data should not seriously conflict with the general 

known facts of the natural history and biology”, experimental evidence and analogy. As 

observed by Rothman and Greenland, if Hill’s considerations on causality are conceived 

as causal criteria, then many counterexamples can invalidate their universal validity in the 

clinical sciences (Rothman and Greenland 2005). However, Richard Doll in a Fisher 

memorial lecture clarified that only temporal relationship is conditio sine qua non, since 

exposure is an essential requirement for causality in the health domain (Doll 2002). 

Moreover, it can be worth noting that these causal associations are handled by Hill’s 
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aspects at the group level, leaving without indication the causal relationship at individual 

level. Causality, instead, is essentially connected with the choice (or the interplay) of an 

individual or a population level of risk. In any case, causality at individual level can be 

hardly conclusively established, but it possible to assess – from a probabilistic point of 

view – if an individual will develop more likely than not a disease because of an exposure 

to a risk factor if some of the following conditions are fulfilled (Lagiou, Adami et al. 

2005): 

1) The exposure is an established cause of the disease. 

2) The exposure of the individual has to be similar (duration, intensity, latency) to 

the exposure causing the disease. 

3) The disease of the individual must be similar to that which is aetiologically 

associated to the exposure. 

4) The individual has not to be exposed to other risk factors. 

5) The relative risk must be greater than 2. 

Notice that this perspective on causality makes particularly sense when one wants to 

acknowledge (at individual level) already known causes, while it seems less adequate for 

the discovery of new causes. At any rate, condition 5 is quite problematic for our 

discussion. In fact, such condition appears to partially rule out the possibility of 

establishing a causal relationship in presence of weak associations and this seems to be 

unlikely. In case of weak associations, we suggest to integrate population-based 

probabilistic data with the epistemic probability based on the medical knowledge of the 

clinician. Such an integrative view of probabilistic causality has some advantages since it 

possible to deal with weak association in probabilistic causality but there is the well-

known problem of assessing clinician’s probability attribution. Anyway, some new 

procedures of statistical expert elicitation can facilitate this task. We will go further in this 

discussion in the next section, after first presented some paradoxes connected with the 

notion of probabilistic causality. 

3. Probabilistic Causality and some paradoxes 

The probabilistic account of causality is prima facie based on the intuitive idea that a 

condition φ causes an event ψ if p(ψ|φ)> (ψ|￢φ) together with other conditions. It has 

been observed, though, that causality seems to be an asymmetrical relation, while this is 

not the case for probability relation and effects seem never (or almost never) to occur 
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before their causes. On the other hand, a probabilistic account of causality can be 

connected with the concept of risk (which is a key notion in medicine), for risk is the 

probability of an uncertain outcome in connection with the magnitude of the effect and 

the consequences. Unfortunately, many biases are associated to probabilistic causality. 

Some of them, which are extremely important in the health sciences, are the following: 

1) Simpson’s paradox occurs when the probabilistic association between two variables is 

inverted in each subpopulation of a target population since an undetected risk factor is 

causally related to the outcome and associated with the determinant (Yule 1903; Simpson 

1951; Heydtmann 2002). Such paradox, which is involved in the comparison between 

two groups which are different according to a determinant of health like age, sex etc.., 

can be overcome by a standardisation or the addition of new relevant (causal) 

information in order to avoid confounding. A variable which fulfils the following 

conditions can be considered as a confounder if: 

i) it is associated with the risk factor in the population. 

ii) it is be related to the disease, excluding the relation between risk factors and 

disease. 

iii) it is not a link in the causal pathway to disease (Hannan 1996). 

As a way of example, assume that in relation to disease X the hospital A has 56% of 

positive outcomes and the hospital B 58%. Indeed it seems that B presents better results 

rather than A. Now, imagine that 88% of the A cases are related to serious diseases (SDs) 

and there is a positive outcome (PO) in 50% of these cases (namely in 44% of the A 

cases), while the residual 12% are mild cases (MCs) with 100% of positive outcomes 

(namely, 12% of the A cases). The hospital B, instead, has 36% of (MCs) of which 90% 

shows a PO (32.4% of the B cases), while the remaining 64% of SD shows a PO in 40% 

(namely 25.6% of the B cases). Therefore, it is better to undergo the treatment in the 

hospital A in any case, since if I have a serious disease then the hospital A has 50% of a 

PO while the hospital B has 40% and if I have a mild disease then the probability of a PO 

is 100% in hospital A and 90% in the hospital B. By contrast, abstracting from the 

severity of the disease, the hospital B must be preferred (Table 1). Hence, the clinician 

has to understand if the addition of new individual clinical information can reverse the 

effect of the exposure in order to not violate condition (4).  
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2) Berkson’s paradox is connected with a selection bias for which persons have different 

probabilities of being included in the study sample with respect to the pertinent features 

to be analysed in the study (Berkson 1946; Roberts, Spitzer et al. 1978; Armstrong 1998; 

Sadetzki, Bensal et al. 2003). If a patient has two diseases, then his (or her) probability of 

being hospitalised is greater than the probability connected to either disease individually. 

For instance, in case-control studies the recruitment of the population among 

hospitalized cases and controls may face this paradox, since people with multiple diseases 

can be over-represented in the contingency tables regarding hospitalization data, while 

this is not the case at the overall population level.  

3) Neyman Bias. When there is a gap between the exposure and the selection it is possible 

to incur a prevalence-incidence bias (also known as Neyman bias (Neyman 1955)), consisting 

in including prevalent cases in the case-control studies. In such studies an association 

may be spurious if the risk factor affects, for instance, survival. A supposed association 

detected by hospital records between myocardial infarction and snow shovelling may be 

affected by bias due to the possibility that some people may have died during the 

driveways, thus not succeeding in arriving at the hospital. As a consequence, the level of 

association between a risk factor and an outcome can be easily underrated, because of the 

inadequacy of the case group. Thus, disease duration can involve the modification of the 

assessment of the association between determinants and an outcome when such 

association is based on prevalent cases. Sackett clarifies that “a late look at those exposed 

(or affected) early will miss fatal and other short episodes, plus mild or silent cases and 

cases in which evidence of exposure disappears with disease onset” (Sackett 1979). Note 

that also for this bias the knowledge of the causal structure of a process plays a central 

role. 

4) Lindley-Jeffreys paradox. In any circumstances the acknowledgment of a probabilistic 

association may depend on the choice of the perspective on probability adopted by the 

researcher and on the knowledge of different sources of available evidence. For instance, 

it can be the case that one adopts a statistical hypothesis testing which may indicate that 

the null hypothesis H0 must be rejected according to a specific P value, while from a 

Bayesian perspective H0 is more probable than the alternative hypothesis H1 and this 

seems absurd. This condition is named Lindley-Jeffreys paradox and states that a statistical 

significant small association H1 may be less likely than H0 by calculating the Bayes factor 

(B) which expresses the ratio of the odds of prior and posterior information that can 
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favour one hypothesis rather than the other (Jeffreys 1939; Lindley 1957; Ioannidis 

2008). 

Being a ratio, B can assume values between 0 and infinite. If B>1, then H0 receives more 

probabilistic support rather than H1, if B<1 then H1 receives more probabilistic support 

rather than H0 and if B=1, then H0 and H1 have the same probabilistic support. 

Therefore, a significant association which has been acknowledged by means of classical 

statistical hypothesis testing can be disconfirmed through Bayesian methods. If B=1/100, 

this fact suffices to convert a prior probability of 0.9 in the truth of the null hypothesis 

into a probability of 0.08 and in this case there is very strong evidence against the null 

hypothesis, while e.g. if the initial probability in the null hypothesis is 0.9, a Bayes factor 

of 1/10 gives a poster probability of H0 =0.47. Thus H0 is less likely than not to be true. 

More generally, a Bayes factor of 1/5 expresses a weak evidence, a Bayes factor of 1/10 a 

moderate evidence, a Bayes factor of 1/20 a substantial strength of evidence and a Bayes factor of 

1/100 shows a very strong strength of evidence between probabilistic factors (Goodman 1999).  

The importance of the choice of the probabilistic model has become evident in 

connection with the association between vitamin E supplementation and an increase of 

all-cause mortality which was detached by classical meta-analyses (Miller, Pastor-Barriuso 

et al. 2005). By contrast, a Bayesian meta-analysis of the same articles has showed no 

association between vitamin E supplementation and an increase of all-cause mortality 

(Berry, Wathen et al. 2009). Hence, the choice of a model entails the implicit acceptance 

of some methodological and causal assumptions which may lead toward different 

findings and interpretations. In any case, a meta-analysis can improve the 

acknowledgment of a causal relationship even if it is not its primary role. Note that 

Lindley-Jeffreys paradox can receive an adequate interpretation if it is considered being 

related to the possibility of integrating statistical population data with the assessment of 

clinical (individual) knowledge. 

The aforementioned biases show the unreliability of the probabilistic causality per se, 

notably in the clinical setting. That is why expert’s clinical opinions can improve medical 

judgment integrating population based probabilistic data with clinical knowledge by 

means of procedures of expert’s elicitation together with a Bayesian framework. The 

elicitation of probabilities of expert’s beliefs can be an important tool when assessing 

causality in the clinical context. There are many techniques to elicit probabilities (Slottje, 

van der Sluijs et al. 2008). According to one of these techniques, the expert is asked to 

evaluate whether the actual value of a quantity is higher or lower than a certain number. 
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This can be carried out, for instance, by means of graphical tools such as probabilistic 

wheels. Alternatively, the expert is asked to fix the value of a quantity such that the 

probability of higher or lower values turns out to be some specific amount. We do not go 

into the analysis of these techniques. What is important for our discussion is that the 

clinician should be aware of the possibility of incurring inconsistencies and also of the 

availability of some methods for avoiding these.  

More generally, it is a well-known fact that intuitive reasoning involving probabilistic 

computations is affected by many heuristics and cognitive biases which influence both 

experts and lay people (Tversky and Kahneman 1974; Kahneman and Tversky 1979). For 

instance, the framing of the information plays an essential role in decision making, e.g. 

people are more likely to undergo a treatment if it is communicated to them that there is 

80% of no counter indication in place of communicating that there is 20% of a negative 

outcome related to the treatment. Thus, the knowledge of cognitive heuristics and biases 

in connection with “debiasing techniques” can be a good tool for expert elicitation in order 

to assess the probabilistic measure of expert’s knowledge and, thus, integrating clinical 

information with scientific evidence. 

Final Remarks 

We have discussed the complexity of dealing with the statistical and causal structure of 

weak associations.  We have observed that it is important to frame the data of a study in 

a way that can minimize the occurrence of some paradoxes and cognitive bias and this 

also requires a specification of a causal mechanism when it is possible, especially when 

the association is weak. The choice of a whatsoever model entails the tacit acceptance of 

some assumptions. For instance, the choice of assuming or not a “black box strategy” is 

a methodological constraint that might partially modify the epidemiologic models and, 

sometimes, the interpretation of the findings of a study. Another methodological 

assumption that we have presented is the distinction between a general and an individual 

level of causation, specifically when dealing with weak associations. Sound strategies of 

experts’ prior elicitation can integrate population-based data with the judgment of the 

clinician in order to mitigate the impact of the paradoxes associated to the notion of 

probabilistic causality, which occur at population level in the health sciences, with 

clinician’s knowledge associated with current clinical practice. 
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 Hospital A Hospital B 

 Mild 
Cases 

Severe Cases Mild Cases Severe Cases 

Distribution 
of cases per 
hospital 

12% 88% 36% 64% 

Percentage of 
positive 
outcomes 

100% 50% 90% 40% 

Percentage of 
positive 
outcomes in 
relation to the 
severity of 
disease 

12% 44% 32.4% 25.6% 

Aggregated 
Percentages 

56% 58% 

 

Table 1. An example of Simpson’s Paradox in a clinical 

 

 

 

 

 


